CD117 antibody-drug conjugate-based conditioning allows for efficient engraftment of gene-modified CD34+ cells in a rhesus gene therapy model

Naoya Uchida¹, ², Ulana Stasula¹, Malikiya Hinds¹, Paula Germino-Watnick¹, Allen E Krouse⁴, N Seth Linde⁴, Aylin Bonifacino⁴, Kellie Latimer³, Prashant Bhattarai³, Nicholas Yoder³, Rahul Palchaudhuri³, Qing Li³, Kirk Bertelsen³, Lisa M Olson³, Robert E Donahue¹, John F Tisdale¹

1. Cellular and Molecular Therapeutics Branch, NHLBI/NIDDK, NIH, Bethesda, MD
2. Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
3. Magenta Therapeutics, Cambridge, MA
4. Translational Stem Cell Biology Branch, NHLBI, NIH, MD
Conflict of interest

Kellie Latimer, Rahul Palchaudhuri, Qing Li, Nick Yoder, Prashant Bhattarai, Kirk Bertelsen, and Lisa M Olson are or were employees of Magenta Therapeutics.
Hematopoietic stem cells (HSCs) from SCD patients

Corrected by β-globin gene transfer to CD34+ HSCs with lentiviral vectors

- Plerixafor mobilization
- Myeloablative busulfan conditioning
- High-efficiency transduction ex vivo

Autologous transplantation back to patient

Sickling of red blood cells

Phenotypic correction
Targeted conditioning with exploratory antibody-drug conjugate (ADC)

- Less toxic conditioning
- Immune preservation
- Avoid secondary malignancy and infertility
- Improve risk benefit profile to broaden access
Hypothesis: CD117 (c-kit) is an ideal target for HSC depletion?

Questions for CD117-ADC conditioning

- Sufficient for HSC ablation?
- Not immunosuppressive?
- Minimal systemic toxicity?

CD117 expression is limited to progenitor cells
CD117-ADC depletes both human and rhesus CD34+ cells

Hematopoietic Stem Cell Killing Assay

Human CD34+ cell depletion in xenograft mouse BM

% Viable CD34+

Concentration [M]

Rhesus IgG ADC

Rhesus EC_{50}=0.1pM

Human IgG ADC

Human EC_{50}=0.2pM

Day21

Number of CD34+ cells in BM

PBS CD117 mAb IgG ADC CD117 ADC

p < 0.01

Tisdale JF. ASH. 2019
>99% depletion of non-human primate CD34+ CD90+ cells 7 days post-injection

Control (PBS)

>99% depletion
BM failure

CD117-ADC (0.1mg/kg)

CD117-ADC (0.2mg/kg)

Busulfan (5.5mg/kg x4)

CD34
CD90

CD34
CD90

CD34
CD90

CD34
CD90
Rapid clearance of CD117-ADC in rhesus plasma

Plasma ADC concentration (ng/ml)

Days post-ADC injection

- Wild Type CD117-ADC
- Engineered CD117-ADC

ADC in circulation

Lower limit of detection by ELISA

Effective concentration that is not cytotoxic to CD117 expressing cells

Safe to infuse graft

t1/2 = 10hrs

Modeled Pharmacokinetics
Preliminary data with durable and detectable gene marking after 0.2 mg/kg CD117-ADC conditioning

Single-dose CD117-ADC 0.2 mg/kg (N=2)

Rhesus macaques

CD34+ cells

β-globin vector

Transduction MOI 50

Mobilization

Conditioning

Transplantation

CD117-ADC

Vector copy number per cell (analyzed by qPCR)

In vitro VCN 5.5 ± 0.2

13U047

In vitro VCN 3.8 ± 0.0

12U032

VCN: Vector copy number per cell
MOI: Multiplicity of infection

Conditioning Regimen	Peripheral VCN
CD117-ADC | 0.01-0.05
Busulfan | 0.004-0.08

Tisdale JF. ASH. 2019

Vector copy number per cell (analyzed by qPCR)

0.001 0.01 0.1 1 10

0 200 400 600

Granulocyte

Lymphocyte

VCN range with busulfan conditioning
CD117-ADC conditioning in a rhesus gene therapy model, compared to busulfan conditioning

Single-dose CD117-ADC 0.3 or 0.4 mg/kg \((N=4)\)

- **Rhesus macaques**
- Mobilization
- CD34\(^+\) cells
- Transduction \(\text{MOI 50}\)
- **CD117-ADC**
- Conditioning
- Transplantation

Multi-dose busulfan 5.5 mg/kg \(x\) 4 days \((N=2)\) Myeloablative regimen in clinical trials

- **Rhesus macaques**
- Mobilization
- CD34\(^+\) cells
- Transduction \(\text{MOI 50}\)
- **Busulfan**
- Conditioning
- Transplantation
Rapid and transient granulocyte suppression after CD117-ADC or busulfan conditioning

- **CD117-ADC (0.3mg/kg)**
 - ZL13
 - ZJ62

- **CD117-ADC (0.4mg/kg)**
 - H635
 - H96G

- **Busulfan (5.5mg/kg x4)**
 - 12U018
 - 12U020
 - 12U020

Granulocytes (10^3/μL)

Days post-transplant

Legend:
- Whole blood
- Platelet-rich plasma

Transfusion
Minimal lymphocyte suppression after CD117-ADC or busulfan conditioning

CD117-ADC (0.3mg/kg)
- ZL13

CD117-ADC (0.4mg/kg)
- H635

Busulfan (5.5mg/kg x4)
- 12U018

Lymphocytes ($10^3/\mu L$) vs. Days post-transplant

- Whole blood
- Platelet-rich plasma

Transfusion
Transient erythroid suppression after CD117-ADC or busulfan conditioning

CD117-ADC (0.3mg/kg)

- ZL13
- ZJ62

CD117-ADC (0.4mg/kg)

- H635
- H96G

Busulfan (5.5mg/kg x4)

- 12U018
- 12U020

Reticulocytes ($10^3/\mu L$)

Days post-transplant

Whole blood

Platelet-rich plasma

Transfusion
Transient platelet suppression after CD117-ADC conditioning, but not busulfan conditioning.

- **CD117-ADC (0.3mg/kg)**: ZL13, ZJ62
- **CD117-ADC (0.4mg/kg)**: H635, H96G
- **Busulfan (5.5mg/kg x4)**: 12U018, 12U020

Platelets (10^3/μL) over **Days post-transplant**:
- Whole blood
- Platelet-rich plasma

Whole blood
Platelet-rich plasma

Transfusion
Efficient lentiviral gene marking *in vivo*

CD117-ADC (0.3mg/kg)
- ZL13
 - In vitro VCN 6.4 ± 0.1

CD117-ADC (0.4mg/kg)
- H635
 - In vitro VCN 15.3 ± 0.2
- H96G
 - In vitro VCN 8.4 ± 0.1

Busulfan (5.5mg/kg x4)
- 12U018
 - In vitro VCN 15.3 ± 0.4
- 12U020
 - In vitro VCN 5.0 ± 0.0

Vector copy number per cell (analyzed by qPCR)

Days post-transplant

Granulocyte and Lymphocyte
Vector-mediated fetal hemoglobin (HbF) induction

CD117-ADC (0.3mg/kg)
- ZL13
- ZJ62

CD117-ADC (0.4mg/kg)
- H635
- H96G

Busulfan (5.5mg/kg x4)
- 12U018
- 12U020

% HbF-positive cells (analyzed by flow cytometry)

Days post-transplant
HbF induction confirmed HPLC-quantitated HbF amounts

- **CD117-ADC (0.3mg/kg)**
 - ZL13
 - ZJ62

- **CD117-ADC (0.4mg/kg)**
 - H635
 - H96G

- **Busulfan (5.5mg/kg x4)**
 - 12U018
 - 12U020

% γ-globin protein amounts (analyzed by RP-HPLC)

Days post-transplant
Minimal and transient elevation of liver enzymes after CD117-ADC or busulfan conditioning

Liver enzyme (U/L)

Days post-transplant

CD117-ADC (0.3mg/kg)
ZL13

CD117-ADC (0.4mg/kg)
H635

Busulfan (5.5mg/kg x4)
12U018

ZJ62
H96G
12U020

Normal ranges
AST: 22-56 U/L
ALT: 19-64 U/L
Undetectable change in kidney function after CD117-ADC or busulfan conditioning

Normal ranges
- BUN: 9-22 mg/dL
- CREA: 0.4-1.1 mg/dL
Minimal toxicities after CD117-ADC conditioning, unlike busulfan conditioning

<table>
<thead>
<tr>
<th>Busulfan side effects</th>
<th>Outcomes with CD117-ADC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emesis</td>
<td>Not observed</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>Not observed</td>
</tr>
<tr>
<td>Mucositis</td>
<td>Not observed</td>
</tr>
<tr>
<td>Wasting syndrome</td>
<td>Not observed</td>
</tr>
<tr>
<td>Seizures</td>
<td>Not observed</td>
</tr>
<tr>
<td>Veno-occlusive disease</td>
<td>Not observed</td>
</tr>
<tr>
<td>Pulmonary fibrosis</td>
<td>Not observed</td>
</tr>
</tbody>
</table>
1. We developed a CD117-ADC targeting both human and rhesus cells, that depleted more than 99% of CD34+CD90+ cells after a single dose with minimal toxicities in rhesus macaques.

2. A single dose of CD117-ADC enabled efficient engraftment of gene-modified CD34+ HSCs in a rhesus gene therapy model, achieving a similar level as myeloablative busulfan conditioning.

3. Robust HbF induction was also confirmed at the protein level in this rhesus gene therapy model following CD117-ADC conditioning.

4. This targeted approach for safer conditioning could improve the risk benefit profile in HSC gene therapy.

Summary

<table>
<thead>
<tr>
<th></th>
<th>CD117-ADC</th>
<th>Busulfan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector Copy Number</td>
<td>0.28 ± 0.16*</td>
<td>0.44 ± 0.17</td>
</tr>
<tr>
<td>(VCN) in Granulocytes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-cell Percent</td>
<td>8.5 ± 1.8*</td>
<td>13.7 ± 5.8</td>
</tr>
<tr>
<td>HbF Percent</td>
<td>8.0 ± 2.9*</td>
<td>11.1 ± 5.2</td>
</tr>
</tbody>
</table>

Mean +/- SD, * no significance (one-tailed t-test) vs myeloablative Busulfan (5.5 mg/kg x 4 days)
Acknowledgements

John Tisdale Laboratory
Robert Donahue
Xiong Liu
Ulana Stasula
Selami Demirci
Malikiya Hinds
Paula Germino-Watnick
Rebecca Chu
Anh Le
All other members

NIH Animal Center
Sogun Hong
Nathaniel Linde
Allen Krouse
Theresa Engels
Justin Golomb
Aylin Bonifacino

Magenta Therapeutics
Kellie Latimer
Prashant Bhattarai
Nicholas Yoder
Rahul Palchaudhuri
Qing Li
Kirk Bertelsen
Lisa Olson